3. Q&Aコーナー

ーマンションの防音対策:内部発生音の 対策─

一般社団法人日本音響材料協会 運営委員会

Q;マンション内部発生騒音の主な音源と、それらの 防止対策の留意点について教えて下さい.

A;マンション(集合住宅)の防音対策は、屋外騒音と建物内発生音について、対象音源を検討して実施します。これらの音源を示したイラストを文献から引用し、図 1^{11} に示しました。なお、屋外騒音については、後日、本誌Q&Aコーナーで述べる予定です。

本稿では、内部発生音について、図1の中から、検 討を要求されることが比較的多い、と考えられる主な 音源、対策の留意点について述べることにします.

1. 対策の進め方の概要

マンション内では、図1に示す音源のうち、例えば、 テレビ視聴、入居者の挙動、設備騒音などが検討対象 となります。 これらは、企画・設計段階で、諸資料、予測などから影響を検討します。このとき、室内騒音の許容値については、諸学会・協会の基準、発注者サイドの規準などに基づいて、設計目標値が設定されます。例えば、比較的新しいものとして、日本建築学会委員会提案²⁾などが、参考となるでしょう。

2. 建物内の主な騒音源

マンション内部で発生する騒音対策は、「空気音」と「固体音」の両者について検討する必要があります.

2.1 空気音

空気音では、居住者の生活に纏わる主な騒音として、 人声、TV等が挙げられます。文献²⁾によると、例えば、 6畳間の室内で、人声では75~78 dBA、テレビニュー ス聴取音では75~79 dBA、などとされています。なお、 オーディオ機器発生音は、スピーカの出力によっては、 界壁だけでなく上下階への空気音、スピーカの振動が 起因する固体音が問題となる場合もあります。

その他のマンション内部の発生音については、同文献を参照されたい.

隣戸間の界壁の遮音性能は、マンション遮音の基本 的な事項であり、建物工法に応じて検討される.

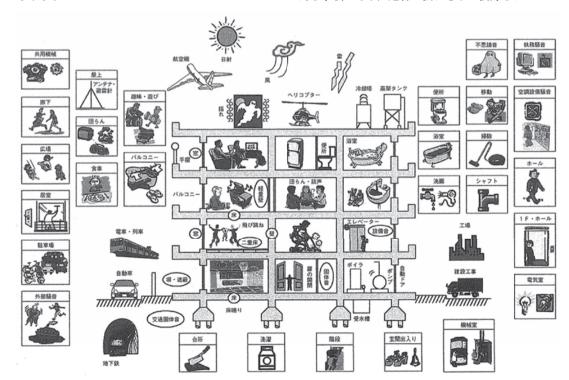


図1 集合住宅で生じる主な騒音の音源一覧1)

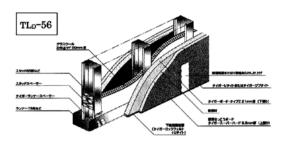


図2 石膏ボード系高性能遮音壁の断面例3)

例として、高層マンションなどで採用される乾式遮音界壁として、RC壁と同等の遮音性能を有する石膏ボード系乾式壁を図2³に示す。

なお、隣戸間の界壁の遮音を検討しているとき、界壁以外のサッシ・換気口などからの伝搬経路の検討も必要となります. この伝搬を「側路伝搬」といいます.

2.2 固体音

固体音としては、歩行、掃除機の稼働、椅子などの 家具移動、建具開閉等が挙げられます。図1と重複す るところもあるが、図3²⁾に、空気音と合わせてこれ らを示した、特に、同一建物内設備機械類に対しては、 振動伝搬による固体音対策として、機器本体だけでな く配管等の防振も必要となる⁴⁾ので注意したい。

現在、対策が重視されている固体音として、床衝撃音が挙げられます。表 1^{5} に、対策の基本などについて掲げてあります。ここに示したように、重量床衝撃音「ドンドン、ドカドカなど」(踵歩行など、ただし、近年では、「飛び降り」等は対象としないようである)と軽量床衝撃音「コツコツ、ギーなど」(硬い履物歩行、椅子等の引きずりなど)の両者について検討します。

なお、床衝撃音レベル低減量は、「JIS実験室で測定された値」⁶⁰であり、標準重量床衝撃音を対象とした場合、同JISでは、「床仕上げ構造自体も床く(躯)体構造と連成系として作用することになり…」とされている。したがって、床衝撃音レベル低減量を、床スラブなど

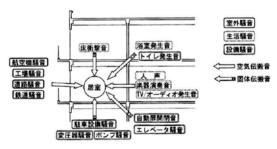


図3 集合住宅の居室へ伝搬する音2)

表1 床衝撃音の種類とその対策方法50

種類	重量床衝撃音	軽量床衝撃音
伝搬のイメージ	飛び跳ねなどの衝撃により床全体が振動 し、その振動した床が下階に音を放射しま す。振撃力が大きいために振動の一部は壁 まで伝わり、壁からも音が放射されます。	小物の落下や、橋子の引きずり等により床 表面のある点に大きな衝撃力が加わり、部 分的に床が振動します。その振動が下階に 音を放射します。
対策の基本	衝撃が加わった時に大きく床が振動しない ことが必要です。床の質量・剛性を増しま す。	衝撃力を緩和させることが必要です。床仕 上材を軟質にします。
注意	床の構造に関わることなので、建築後の対 策が困難です。必ず設計段階で考慮しま しょう。	軽量音対策用フローリングは施工管理を しっかりしなければなりません。また、歩 行感がふわふわすることもあります

基本的条件が異なる、RC造マンションに適用するようなことなどは、上記と異なる対応とされよう。すなわち、低減量とスラブの組み合わせによる性能表示などは、実務的な根拠が必要である。結局、床衝撃音レベル低減量は、「実験室という一定条件下における単なる相互比較」とされていることに尽きよう。

最後に、「不思議音」(怪音・異音)といわれる物音は、固体音が原因である場合が多く、原因が判明すれば解決するといわれ、発生原因としては、「熱系」、「風系」、「設備系」が多い⁷、とされています。

本稿では、マンションの建物内発生音の概要を述べた。詳しくは、下記の「参考文献」を参照されたい.

(回答;運営委員会 宮尾健一)

[参考文献]

- 1) 安岡博人, 中澤真司; 不思議音の範囲, 音響技術, No. 128, p.5, 2004. 12
- 2) 日本建築学会;集合住宅の遮音性能・遮音設計の考え方, pp.17-18, p.32, p.82, 2016. 01
- 3) 日本音響材料協会;音響技術 No. 159, pp.34-35, 2012, 09
- 4) NPO法人建築音響共同研究機構編:集合住宅の騒音防止設計入門, pp.117-157, 学芸出版社, 2017, 09
- 5) 永松英夫;高遮音システム『SHAIDD55』の開発,音響技術, No. 174, p.67, 2016, 06
- 6) JIS A 1440-2; 2007, 実験室におけるコンクリート床上の床仕上げ 構造の床衝撃音レベル低減量の測定方法-第2部:標準重量衝撃源に よる方法, p.1, pp.16-17
- 7) 日本音響材料協会;音響技術No. 186, Q&Aコーナー, p.97, 2019. 06